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ABSTRACT

Distributed Lagrangian Relaxation Protocol (DisLRP) has been
proposed to solve a distributed combinatorial maximization prob-
lem called the Generalized Mutual Assignment Problem (GMAP).
In DisLRP, when updating Lagrange multipliers (prices) of goods,
the agents basically control their step length, which determines the
degree of update, by a static rule. A merit of this updating rule
is that since it is static, it is easy to implement even without a
central control. Furthermore, if we choose this static rule appro-
priately, we have observed empirically that DisLRP converges to
a state providing a good upper bound. However, it must be diffi-
cult to devise such a good static rule for updating step length since
it naturally depends on problem instances to be solved. On the
other hand, in a centralized context, the Lagrangian relaxation ap-
proach has conventionally computed step length by exploiting the
least upper bound obtained during the search and a lower bound
obtained through preprocessing. In this paper, we achieve this ap-
proach in a distributed environment where no central control exists
and name the resultant protocol Adaptive DisLRP (ADisLRP). The
key ideas of this new protocol are to 1) compute global information
with a spanning tree, 2) update step length simultaneously with a
synchronization protocol, and 3) estimate lower bounds during the
search. We also show the robustness of ADisLRP through exper-
iments where we compared ADisLRP with the previous protocols
on the critically hard benchmark instances.
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1. INTRODUCTION
Distributed combinatorial optimization deals with combinatorial

optimization problems in which multiple agents are involved. A
goal of this problem is to find a global optimal solution on the as-
sumption that each individual agent works cooperatively. There
has been high demand for distributed combinatorial optimization
in various fields, such as resource scheduling [13], supply-chain
management [19], and multi-robot coordination [4, 8]. Some re-
searchers have also tried to develop protocols for general problem
formulations, such as the non-linear programming problem [1] and
the constraint optimization problem [15, 16, 17, 21, 22, 24, 25].

Recently, the Generalized Mutual Assignment Problem (GMAP)
has been proposed as a new formalism for distributed task/goods
assignment problems [11]. GMAP is a distributed combinatorial
maximization problem where the agents, each having some goods,
try to exchange their goods optimally while satisfying their individ-
ual resource constraints. Assuming that the recipient agents have
the right to make decisions, GMAP may be otherwise stated as the
resource-constrained distributed set-partitioning problem.

GMAP is an extension of the Generalized Assignment Problem
known as GAP in the Operations Research community [3, 18, 20,
23]. The problem of finding an optimal solution to GAP/GMAP is
NP-hard and furthermore, the problem of judging the existence of
a feasible solution to it is also NP-complete.

A series of peer-to-peer communication protocols, which are
generally named the Distributed Lagrangian Relaxation Protocol
(DisLRP) [10, 11, 12], have been recently proposed to solve GMAP.
DisLRP exploits a technique of Lagrangian decomposition [14] to
translate GMAP into a set of 0-1 knapsack problems owned by the
individual agents. Each agent solves its own 0-1 knapsack problem
to find the most profitable combination of related goods that satis-
fies its resource constraint. We should point out here that, in the 0-1
knapsack problem of an agent, the profit of any good is computed
by subtracting its current price (Lagrange multiplier) from its real
profit to this agent.

The behavior of the agents in DisLRP is outlined as follows.
Starting with some initial prices of the goods, the agents first solve
their 0-1 knapsack problems concurrently using an exact solution
algorithm. Note that the 0-1 knapsack problem itself is NP-hard,
but fortunately, it is said to be an “easier hard” problem [5] and
there exist practically efficient solvers in the literature. Then, the
agents inform their respective neighbors of their solutions indicat-
ing which goods they tentatively selected. Next, after collecting
solutions from all of their neighbors, the agents increase the prices
of goods that are selected by more than one agent while they de-
crease the prices of goods that are not selected by any agent. On

Cite as: Adaptive Price Update in Distributed Lagrangian Relaxation 
Protocol, Katsutoshi Hirayama, Toshihiro Matsui, Makoto Yokoo, 
Proc. of  8th Int. Conf. on Autonomous Agents and Multiagent Systems 
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 
10–15, 2009, Budapest, Hungary, pp. 1033–1040
Copyright © 2009, International Foundation for Autonomous Agents 
and Multiagent Systems (www.ifaamas.org), All rights reserved.



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

1034

the other hand, they keep the same prices of those that are selected
by exactly one agent. With these new prices of the goods, the agents
again solve their new 0-1 knapsack problems concurrently. These
are one round of computation and communication performed by the
agents. Generally, the agents repeat these rounds until they reach
a stable state, where every good is selected by exactly one agent
(equivalently, where the agents find a proper set-partition of the
goods). If the agents follow a valid scheme to update prices, such a
stable state coincides with a global optimal solution to GMAP.

Previously, when updating prices of goods, the agents in DisLRP
basically control their step length, which determines the degree of
update, by a static rule. A merit of this updating rule is that since
it is static, it is easy to implement even without a central control.
Furthermore, if we choose this static rule appropriately, we have
observed empirically that DisLRP converges to a state providing a
good upper bound. However, it must be difficult to devise such a
good static rule for updating step length since it naturally depends
on problem instances to be solved.

On the other hand, in a centralized context, the Lagrangian re-
laxation approach has conventionally computed step length by ex-
ploiting the least upper bound obtained during the search and a
lower bound obtained through preprocessing [23]. In this paper, we
achieve this approach in a distributed environment where no cen-
tral control exists and name the resultant protocol Adaptive DisLRP
(ADisLRP). The key ideas of this new protocol are as follows.

• Compute global information with a spanning tree. The
agents in ADisLRP have to compute the least upper bound
on the optimal value of GMAP while performing the usual
process of DisLRP. However, the least upper bound is global
information because an upper bound is, at any round, the to-
tal sum of all the optimal values of 0-1 knapsack problems
over the agents. Furthermore, it is also dynamic information
because different upper bounds are obtained over the rounds
as the agents update the prices of goods. Therefore, to aggre-
gate such dynamic and global information without any cen-
tral control, the agents in ADisLRP use a spanning tree as
with the protocol proposed in [10].

• Update step length simultaneously with a synchroniza-

tion protocol. When finding an upper bound that is smaller
than the current least upper bound, an agent will update its
step length with this new least upper bound. We should em-
phasize here that all agents must renew their step length si-
multaneously. Otherwise, some agents might update their
price of the same good with different step length and, as a
result, their views on that price would become inconsistent.
This inconsistency could be fatal to our scheme of making
the agents find the least upper bound. Therefore, in ADis-
LRP, we incorporate a synchronization protocol over a span-
ning tree to make the agents update their step length simulta-
neously.

• Estimate lower bounds during the search. In computing
step length, the centralized Lagrangian relaxation method
also exploits a lower bound, which is usually obtained through
preprocessing. Namely, it starts with an off-line heuristic
method, such as a greedy algorithm or a local search algo-
rithm, to find a feasible solution with a lower bound followed
by the main procedure, in which this lower bound is consis-
tently used to compute step length [23]. However, finding a
feasible solution is as hard as finding an optimal solution in
GAP/GMAP, and moreover, it is more desirable that a pro-
tocol for a distributed problem be comprised of one-stage

procedures. Therefore, in ADisLRP, we combine an on-line
protocol that can efficiently estimate a lower bound on the
optimal value of GMAP.

The remainder of this paper is organized as follows. We first
provide the formulation of GMAP in Section 2 and then describe
DisLRP in Section 3. Next, we detail our key ideas about ADisLRP
in Section 4 followed by our experimental results on the critically
hard benchmark instances, showing the robustness of ADisLRP in
Section 5. Finally, we conclude this paper and point out some fu-
ture work in Section 6.

2. GENERALIZED MUTUAL ASSIGNMENT

PROBLEM
GMAP is a distributed combinatorial maximization problem in

which the agents, each having some goods, try to exchange their
goods optimally while satisfying their individual resource constraints.
It can be viewed as a distributed version of GAP, which is formu-
lated as the following Integer Programming (IP) problem.

GAP (decide xkj , ∀k ∈ A, ∀j ∈ J) :

max.
X
k∈A

X
j∈J

pkjxkj (1)

s. t.
X
k∈A

xkj = 1, ∀j ∈ J, (2)

X
j∈J

wkjxkj ≤ ck, ∀k ∈ A, (3)

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J, (4)

where A = {1, ..., m} is a set of agents; J = {1, ..., n} is a set
of goods; pkj and wkj are the profit and the amount of required
resource, respectively, when agent k obtains good j; ck is the ca-
pacity (amount of available resource) of agent k. xkj is a decision
variable whose value is set to 1 when agent k obtains good j and
0 otherwise. The objective is to find the most profitable assign-
ment of n goods to m agents such that (2) every good is assigned
to exactly one agent, which will be referred to as the assignment
constraints, and (3) the assignment satisfies all of the resource con-
straints imposed on individual agents, which will be referred to as
the knapsack constraints. GAP is NP-hard; furthermore, the prob-
lem of judging the existence of a feasible solution to GAP is NP-
complete.

The Lagrangian relaxation problem, denoted as LGAP(μ), is
obtained by dualizing the assignment constraints (2) of GAP as
follows [5, 23].

LGAP(μ) (decide xkj , ∀k ∈ A, ∀j ∈ J) :

max.
X
k∈A

X
j∈J

pkjxkj +
X
j∈J

μj

 
1 −

X
k∈A

xkj

!
(5)

s. t.
X
j∈J

wkjxkj ≤ ck, ∀k ∈ A, (6)

xkj ∈ {0, 1}, ∀k ∈ A, ∀j ∈ J. (7)

where μj is a real-valued parameter called a Lagrange multiplier
(price) for good j and the vector μ = (μ1 μ2 . . . μn) is called
a Lagrange multiplier vector (price vector). It is known that for
any value of μ, the optimal value of LGAP(μ) provides an upper
bound on the optimal value of GAP .
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Since the objective (5) is additive over the agents and the con-
straints (6) are separable over the agents, this maximization can be
achieved by each agent k solving the following subproblem [14]:

LGMPk(μ) (decide xkj ,∀j ∈ Rk) :

max.
X

j∈Rk

pkjxkj +
X

j∈Rk

μj

„
1

|Sj | − xkj

«

s. t.
X

j∈Rk

wkjxkj ≤ ck,

xkj ∈ {0, 1}, ∀j ∈ Rk,

where Rk is a set of goods that may be assigned to agent k and Sj

is a set of agents to whom good j may be assigned. Without loss of
generality, we can assume Sj �= ∅ (i.e., |Sj | is not equal to zero).

To solve GMAP, without gathering all information in one place,
distributed solution is possible by exploiting the following proper-
ties on the relation between the decomposed subproblems and the
global problem [11].

PROPOSITION 1. For any value of μ, the total sum of the opti-
mal values of {LGMPk(μ)| k ∈ A} provides an upper bound on
the optimal value of GAP .

PROPOSITION 2. For some value of μ, if all of the optimal solu-
tions to {LGMPk(μ)| k ∈ A} satisfy the assignment constraints
(2) of GAP , then these optimal solutions constitute an optimal so-
lution to GAP .

3. DISTRIBUTED LAGRANGIAN RELAX-

ATION PROTOCOL
We should notice that the subproblem LGMPk(μ) of agent k is

equivalent to the 0-1 knapsack problem. Namely, this problem im-
plies that each good j in Rk has (pkj −μj) as its profit and wkj as
its amount of required resource and, among these goods, the agent
k must select the most profitable subset that would fit into a knap-
sack of capacity ck. We will hereafter use the term knapsack profit
for (pkj − μj) and GMAP profit for pkj , if the meaning of profit is
not clear from the context. The agents in DisLRP repeatedly solve
their 0-1 knapsack problems while changing the value of μ [11].
The overall behavior of the agents can be summarized as follows.

(Stage 1) The agents set a counter t to zero and initialize their price
vector μ(0) as (0 . . . 0).

(Stage 2) Under a current value μ(t) for the price vector, every
agent k solves its own 0-1 knapsack problem LGMPk(μ(t))
using an exact solution algorithm. Note that the 0-1 knap-
sack problem itself is NP-hard, but fortunately, it is said to be
an “easier hard” problem [5] and there exist practically effi-
cient solvers in the literature. Then, it sends the optimal so-
lution to its own neighbors. Neighbors are a group of agents
who share interests in the same good. Formally, neighbors of
agent k are a union of agents (except for k) having decision
variables that appear in the assignment constraint on good j
in Rk. Namely, it is denoted by

S
j∈Rk

Sj \ {k}.

(Stage 3) After receiving these optimal solutions from all of its
neighbors, every agent k checks whether they satisfy the as-
signment constraints on the related goods. If the assignment
constraints on all of the goods are satisfied, the agents can
stop because the current optimal solutions constitute an op-
timal solution of GAP according to Proposition 2. Note

that each agent will come to know this fact later by using
a spanning tree described in the next section. Otherwise,
for each good j whose assignment constraint is not satisfied,
the involved agents (agents in Sj) simultaneously update its
price from μ

(t)
j to μ

(t+1)
j using the subgradient optimization

method [23]. After that, the agents increase the counter t by
one and go back to Stage 2.

The agents, after initializing their counter and price vector, re-
peat Stages 2 and 3 until each agent comes to know the fact that
they have reached an optimal solution of GAP . The counter t rep-
resents the number of times the agents perform Stages 2 and 3. We
view this one series of execution over Stages 2 and 3 as a unit and
call it a round.

At Stage 3, the subgradient optimization method is applied to
update the price of a good. This is a typical method to update prices
in the Lagrangian relaxation approach. More specifically, an agent
k first computes a subgradient g

(t)
j for each good j in Rk by

g
(t)
j = 1 −

X
i∈Sj

xij , (8)

based on the optimal solutions received from its neighbors. The
subgradient g

(t)
j indicates the gap between the number of agents

required for j (one in this case) and the number of agents that cur-
rently select it. Then, with this subgradient g

(t)
j along with step

length l(t)(> 0), which determines the degree of update, the agent
k updates the price of good j such that

μ
(t+1)
j ← μ

(t)
j − l(t) · g(t)

j . (9)

Intuitively, by this rule, the price of good j will increase when more
than one agent currently select good j, while it will decrease when
no agent currently selects good j. This dynamics of Lagrange mul-
tiplier μj implies the price of good j and that is why we call it
such.

Note that, in DisLRP, the price information on good j is not
under central control. It is rather distributed among the involved
agents (agents in Sj), who generally try to keep its copies identical
all the time. Therefore, when introducing a sophisticated price-
updating scheme into DisLRP, we must devise some mechanism to
meet this identical constraint among distributed prices.

4. ADAPTIVE DISLRP
Previously, when updating prices of goods with (9), the agents

in DisLRP basically control their step length l(t) by a static rule. In
[11], the author suggested that starting with some initial value l(0),
it decays at a constant rate r (0 < r ≤ 1), meaning l(t+1) ← rl(t).
A merit of this updating rule is that since it is static, it is easy
to implement even without a central control. Furthermore, if we
choose this static rule appropriately, we have observed empirically
that DisLRP converges to a state providing a good upper bound.
However, it must be difficult to devise such a good static rule for up-
dating step length since it naturally depends on problem instances
to be solved.

On the other hand, in a centralized context, the Lagrangian relax-
ation approach has conventionally computed step length at round t,
l(t), by using the following formula [23]:

l(t) = π(t) · mins∈{0,...,t} ub(s) − lbP
j∈J{g(t)

j }2
, (10)

where ub(s) is an upper bound found at round s and mins∈{0,...,t}
ub(s) is the least upper bound found by round t; lb is a lower bound
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usually obtained through preprocessing; g
(t)
j is a subgradient for

good j computed by (8). On the other hand, π(t) is a positive
scalar parameter taking 2 as its initial value and being reduced by
half when the least upper bound has not been updated during some
specified interval of rounds. Thus, in the centralized approach, step
length l(t) is computed at each round t by exploiting information
on a problem instance, some of which can be computed off-line (lb)
or by a static rule (π(t)), but the others must be computed on-line
(ub(s) and g

(t)
j ).

In this paper, we achieve this approach in a distributed environ-
ment where no central control exists and name the resultant pro-
tocol Adaptive DisLRP (ADisLRP). This section describes the key
ideas of this new protocol.

4.1 Computing Global Information
To compute step length with (10), the agents need to know an up-

per bound ub(t) of any round t. In GMAP, this bound is global in-
formation since it must be, as claimed by Proposition 1, computed
by taking the total sum of the optimal values of {LGMPk(μ(t))| k
∈ A}. Moreover, the square sum of g

(t)
j over the goods, a denom-

inator in (10), is also global information. In a distributed envi-
ronment without central control, this global information of round
t must be computed by using some explicit protocol among the
agents. ADisLRP incorporates the CollectTree protocol, which was
also used in DisLRPU [10], to compute this global information.

The CollectTree protocol is a typical distributed data collection
algorithm. It assumes a spanning tree has been constructed over
the graph whose nodes are agents and edges are communication
links. A spanning tree of a graph is a sub-graph consisting of the
same set of nodes, but only a subset of edges such that any pair
of nodes is connected through exactly one path. Since a spanning
tree is the basis for many distributed systems, a lot of efficient dis-
tributed algorithms have been proposed to construct various types
of spanning trees [2, 6, 7]. The CollectTree protocol can employ
any spanning tree among those constructed by existing distributed
algorithms.

Here we show the outline of CollectTree used in ADisLRP. At
some round t, agent k creates a list GI

(t)
k in which it keeps its lo-

cal information of this round, denoted by I
(t)
k (which represents a

piece of ub(t) and a piece of the square sum of g
(t)
j ), and sends this

local information (as well as an optimal solution found at Stage 2 in
Section 3) only to its spanning-tree neighbors, who are neighbor-
ing agents connected through spanning-tree links. A spanning-tree
neighbor, k′, who received this message will first append the re-
ceived piece of local information to its list GI

(t)

k′ collecting those
pieces of information of round t, and then will relay this message
at the next round t + 1 to its spanning-tree neighbors except k. In
this manner, the agents in ADisLRP diffuse their local information
of round t over a spanning tree while they proceed with their usual
process of the subsequent rounds. On the other hand, when an
agent has no information of round t to be sent/relayed, it will send
a special character #(t), meaning transmission completed, to that
spanning-tree neighbor. By doing this, each agent k will receive
#(t) from all of its spanning-tree neighbors at a certain round in
the future. At this point, the agent k assures itself that all local
information at round t has been gathered into its list GI

(t)
k , and

therefore it can compute global information with this list.
In order to get the upper bound ub(t) at round t, each agent k

must diffuse the optimal value of LGMPk(μ(t)) as its local infor-
mation I

(t)
k and, after receiving #(t) from all of its spanning-tree

neighbors, compute the total sum over the elements of GI
(t)
k . On

Agent1

opt = 26/3

Agent2

opt = 32/3

Agent3

opt = 20/3

μ = (0 −1 2 1)

p1* 
= (4 2 6 3)

μ = (0 −1 2 1)

p2* 
= (1 1 8 5)

μ = (0 −1 2 1)

p3* 
= (1 1 3 7)

Figure 1: Snapshot at round t

the other hand, in order to get the square sum of g
(t)
j over the goods,

each agent k must diffuse
P

j∈Rk
{g(t)

j }2/|Sj | as its local informa-
tion and compute their total sum in the same way. We should point
out that if this square sum of g

(t)
j over the goods proves to be zero,

each agent comes to know the fact that a global optimal solution
of GAP was found at round t. ADisLRP makes use of this as a
termination condition.

4.2 Simultaneous Update of Step Length
With this method on any type of spanning tree, it will take at

least two more rounds for each agent to know global information
of round t because any agent spends at least one round to collect
its neighbors’ local information of round t and another round to
collect their #(t) messages. We should note that the agents know
this global information at different rounds. For example, Figure
1 shows a GMAP instance with four goods and three agents. An
edge indicates a neighborhood relation among agents and a thick
edge indicates a spanning-tree link. We assume that, at a round t,
agent 1 selects goods 1 and 3 as its optimal solution, whose optimal
value is 26/3; agent 2, on the other hand, does goods 3 and 4, whose
optimal value is 32/3; agent 3 does only good 4, whose optimal
value is 20/3. The upper bound ub(t) of this round is actually 26
(=(26+32+20)/3), but when the agents collect this local information
using the protocol described in Section 4.1, agent 1 will know this
value at round t+2 while agents 2 and 3 will know it at round t+3.

As illustrated in this example, time delays in knowing global
information are generally different among the agents. Therefore,
if each agent changed its step length with (10) immediately after
knowing the latest global information, agents would update the
price of some good j by using (9) with different step length and,
as a result, the (distributed) price of j would not become identical
among the involved agents. Due to these inconsistent views on the
price, the agents might fail to get a valid upper bound after that
because Proposition 1 no longer holds for such inconsistent prices.
Therefore, in ADisLRP, we incorporate a synchronization protocol
over a spanning tree to make an agent wait for all the other agents
to know global information and make the agents update prices with
the same step length simultaneously.

We now outline this synchronization protocol, which is divided
into three phases. In the first phase, when sending/relaying local
information over a spanning tree, an agent adds a hop count to it
that represents how many times it has been transmitted so far over
a spanning tree. Each agent also puts this hop count into the list
that keeps collected local information of a certain round. When all
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local information of a certain round is collected, an agent k can
identify the maximal hop counts, denoted by MyMaxHopk, which
represents the number of hops required to reach from k to the fur-
therest agent on the spanning tree. For example, in Figure 1, agent
1 will eventually come to know MyMaxHop1 = 1 through this
first phase of this protocol. Similarly, agents 2 and 3 will also come
to know MyMaxHop2 = 2 and MyMaxHop3 = 2, respectively.

In the second phase, an agent k also diffuses this MyMaxHopk

over a spanning tree using the above-mentioned messages for col-
lecting pieces of global information. By this, each agent will even-
tually come to know the maximal hop counts of all agents and be
able to identify its maximal value MaxHop over those maximal
hop counts. Obviously, MaxHop is inherent in a spanning tree and
indicates the maximal hop counts on a spanning tree over those of
all possible pairs of agents. We can see MaxHop = 2 for a span-
ning tree in Figure 1. Note that MaxHop is also global information,
which may be known by the agents at different rounds.

The agents must go on to know the fact that every agent knows
the value of MaxHop (that is, the fact that it becomes common
knowledge). So, in the third phase, an agent also adds this MaxHop
into the messages to be spread along a spanning tree. If an agent
has not yet been aware of MaxHop, it diffuses any symbol instead,
say 0, indicating that it does not know MaxHop at that time. At
some round in the future, each agent will eventually know the fact
that all of the agents have become aware of MaxHop (that is, the
fact that MaxHop becomes common knowledge). Note also that
the agents may know this fact at different rounds.

The key rule of this synchronization protocol is as follows.

• Assume that MaxHop was certainly common knowledge at
round t and an agent k knows this fact at round tk (> t),
then the agent k must update its step length using global in-
formation of round t exactly at a round of (tk + MaxHop −
MyMaxHopk).

Consequently, at this round, the agents in ADisLRP simultane-
ously update their step length with exactly the same global infor-
mation of round t. In Figure 1, agent 1, for example, will come
to know an upper bound of 26 at round t + 2, but will change its
step length using this upper bound at round t + 3, computed by
t + 2 + MaxHop −MyMaxHop1. On the other hand, both agents
2 and 3 will come to know the upper bound at round t + 3 and
immediately change their step length using this upper bound, since
both t + 3 + MaxHop − MyMaxHop2 and t + 3 + MaxHop −
MyMaxHop3 are t + 3.

Note that, in the above, once an agent k identifies MyMaxHopk

and MaxHop after going through those three phases, it does not
have to go through them again because these values are static. On
the other hand, in the beginning where these three phases are per-
formed, the agents cannot change their step length simultaneously
because each agent k may not know MyMaxHopk or MaxHop.
Thus, before accomplishing these three phases, the agents in ADis-
LRP proceed with a common default value, one, for their step
length.

4.3 On-line Estimation of Lower Bounds
In updating step length with (10), the centralized Lagrangian re-

laxation approach also exploits a lower bound lb, which is usually
obtained through preprocessing. Namely, it starts with an off-line
heuristic method, such as a greedy algorithm or a local search al-
gorithm, to find a feasible solution with a lower bound followed by
the main procedure, in which this lower bound is consistently used
to compute step length [23]. However, finding a feasible solution
is as hard as finding an optimal solution in GAP/GMAP, and more-

over, it is more desirable that a protocol for a distributed problem
be comprised of one-stage procedures. Therefore, in ADisLRP, we
combine an on-line protocol that can efficiently estimate a lower
bound on the optimal value of GMAP.

We will first provide an overview of this protocol. In addition to
the local information on ub(t) and the square sum of g

(t)
j , the agents

collect the individual optimal solutions of round t using a spanning
tree. With these collected optimal solutions, an agent computes an

estimated lower bound l̂b
(t)

by using the method detailed below
and, when updating step length with (10), uses the greatest esti-
mated lower bound among those computed up to this round. We
should point out here that with this method an agent may overesti-
mate the bounds and, as a result, the greatest estimated lower bound
can exceed the actual optimal value. An agent will become aware
of such overestimation when an estimated lower bound gets larger
than the current least upper bound. In order to address this issue,
each agent keeps a series of the greatest estimated lower bounds in
a stack and, when becoming aware that the greatest bound is over-
estimated, retrieves from the stack the latest bound that is smaller
than the current least upper bound. In our current implementation,
once this retrieval occurs, an agent stops estimating the bounds and
sticks to this retrieved bound until finding this is again overesti-
mated.

Next, we will detail the method for estimating a lower bound.
With the optimal solutions of round t collected by the CollectTree

protocol, an agent k computes an estimated lower bound l̂b
(t)

as
follows.

(Step 1) Divide a set Rk of goods into:

J0: a set of goods that were not selected by any agent at
round t,

J1: a set of goods that were selected by exactly one agent
at round t,

J2: a set of goods that were selected by more than one agent
at round t.

For example, we can see J0 = {2}, J1 = {1}, and J2 =
{3, 4} for any agent in Figure 1.

(Step 2) Create a partial assignment PA(t) such that:

• each good in J1 is assigned to the agent who selects it,

• each good in J2 is assigned, among those who select
it, to the agent who gives the maximal GMAP profit to
this good1,

and then compute the objective value lb
(t)
PA of PA(t) using

the GMAP profits collected together with the optimal knap-
sack solutions. For example, in Figure 1, each agent creates
its PA(t) such that good 1 is assigned to agent 1, good 3 to
agent 2, and good 4 to agent 3. The objective value lb

(t)
PA of

this partial assignment is 19 (= 4 + 8 + 7). Clearly, PA(t)

satisfies all of the knapsack constraints, and the assignment
constraints on the goods in both J1 and J2 (but not in J0).

(Step 3) Guess a lower bound by extending PA(t) over J0 as fol-
lows.

If J0 = ∅, then PA(t) is a feasible assignment, a full assign-
ment that satisfies all of the constraints. Thus, its objective

1In this on-line estimation protocol, we assume that the agents will
reveal their GMAP profits of selected goods.
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value lb
(t)
PA provides a valid lower bound. Furthermore, if

this lower bound is equal to the currently-known least up-
per bound, an agent can prove PA(t) to be a global optimal
solution.

On the other hand, if J0 �= ∅, then it is generally not clear
whether PA(t) can be extended to a feasible assignment. How-
ever, assuming that the search space under PA(t) includes a
feasible assignment, its objective value should be not less
than

lb
(t)
PA +

X
j∈J0

min
k∈Sj

pkj , (11)

where the first term is the objective value of PA(t); the sec-
ond term is computed by identifying, for each good j in J0,
the minimal GMAP profit over those provided by its involved
agents and then taking the sum of all these minimal profits
over J0. In this protocol, an agent estimates a lower bound at

(11) (computes l̂b
(t)

by (11)) even if the search space under
PA(t) does not include a feasible assignment. In Figure 1,
since the formula (11) is 19 + min{2, 1, 1}, we can see the

estimated lower bound l̂b
(t)

to be 20.

Obviously, an agent may overestimate a lower bound when the
search space under PA(t) does not include a feasible assignment.
We should point out that the problem of deciding if this search
space includes a feasible assignment is NP-complete because this
problem is equivalent to finding a feasible solution to GAP whose
goal is to assign J0 optimally to the agents with remaining capac-
ities. Our on-line estimation, on the other hand, is very efficient
and the issue of overestimation can be easily compensated with the
above retrieval method.

5. EXPERIMENTAL EVALUATION
We made experiments to show the robustness of the proposed

protocol. In these experiments, we made the agents solve the GAP
benchmark instances2. It must be pointed out that these instances
are so hard that, for some of them, even centralized algorithms have
not yet proved their optimal solutions. Note that since these in-
stances are a minimization problem, we translated each of them
into an equivalent maximization problem by multiplying the costs
by −1.

Our experiments were conducted on the simulator, written in
JAVA, which simulates concurrent activities of multiple agents. As
a problem solver by which an agent solves the local knapsack prob-
lem, we used the commercial solver, ILOG CPLEX11.0.

5.1 Comparison with the Previous Protocols
First, we compared ADisLRP and the previous protocol DisLRPU

[10] on the upper bounds to which they converge. Note that, as a
spanning tree for both protocols, we used the breadth-first search
tree illustrated in Figure 2.

In updating step length with (10), ADisLRP also uses a positive
scalar parameter π(t). As with the centralized Lagrangian relax-
ation approach, π(t) takes 2 as its initial value and is reduced by
half when the least upper bound has not been updated during some
specified interval of rounds. By doing this, π(t) is gradually re-
duced as rounds proceed and eventually becomes almost close to
zero. In our experiments, we set this interval to be 100 rounds and
terminated a run when π(t) got smaller than a value of 10−6. We
measured the least upper bound at this terminated round.

2http://www.al.cm.is.nagoya-u.ac.jp/˜yagiura/gap/

Table 1: ADisLRP vs. DisLRPU on Benchmark Instances
Instance Opta Protocol Round UB EstLB
c10200 −2806 ADisLRP 4542 −2804 −2939
in gapc DisLRP1

U 10000 −2804 −
DisLRP2

U 10000 −2799 −
DisLRP3

U 3208 −2804 −
c20200 −2391 ADisLRP 5327 −2391 −2503
in gapc DisLRP1

U 10000 −2390 −
DisLRP2

U 10000 −2384 −
DisLRP3

U 3804 −2391 −
c10200 −12432∗ ADisLRP 4405 −12426 −12559
in gapd DisLRP1

U 10000 −12425 −
DisLRP2

U 10000 −12415 −
DisLRP3

U 3576 −12426 −
c20200 −12241∗ ADisLRP 4422 −12230 −12595
in gapd DisLRP1

U 10000 −12229 −
DisLRP2

U 10000 −12201 −
DisLRP3

U 4045 −12230 −
c10200 −23307∗ ADisLRP 4400 −23303 −24487
in gape DisLRP1

U 10000 −23301 −
DisLRP2

U 10000 −23299 −
DisLRP3

U 3927 −23303 −
c20200 −22379∗ ADisLRP 4344 −22378 −28070
in gape DisLRP1

U 10000 −21979 −
DisLRP2

U 10000 −22365 −
DisLRP3

U 3748 −22377 −
aThe figures marked by ∗ are the best known lower bounds instead
of the optimal values.

On the other hand, to compare with ADisLRP, we made the fol-
lowing three versions of DisLRPU :

DisLRP1
U , where step length l(t) is fixed to 1/|Sj |, as with the

original DisLRPU in [10];

DisLRP2
U , where step length l(t) is fixed to 1;

DisLRP3
U , where step length l(t) is replaced by the aforesaid π(t),

which is gradually reduced as rounds proceed.

As to both DisLRP1
U and DisLRP2

U , we set a limit of 10000
rounds and measured the least upper bound at this limit round. But,
as to DisLRP3

U , we terminated a run in the same way with ADis-
LRP (when π(t) got smaller than 10−6) and measured the least
upper bound at this terminated round.

Due to space constraints, we show only the results on two large
instances, c10200 (assigning 200 goods to 10 agents) and c20200
(assigning 200 goods to 20 agents), for each problem class of gapc,
gapd, and gape in Table 1. We should point out that these instances
are critically hard even for centralized GAP algorithms. For the
four instances of gapd and gape in particular, optimal solutions
have not been discovered so far even with centralized algorithms.
Thus, at the Opt column, showing usually optimal values, in Ta-
ble 1 we describe the best known lower bound marked with ∗ for
these instances. On top of that, for ADisLRP, we show at the Es-
tLB column in Table 1 the greatest estimated lower bounds being
computed by the method described in Section 4.3. As indicated in
Table 1, ADisLRP and DisLRP3

U , both of which reduce step length
by using a scalar parameter π(t), can provide tighter upper bounds
consistently. On the other hand, looking at the Round column that
shows the rounds at which the protocols are terminated, we can see
that DisLRP3

U seems to converge a little faster than ADisLRP.
Next, with the other properties remaining the same, we created

a new instance, called c**k, from an instance of c** by making
all the profits 1000 times and performed the same experiments for
these new instances. Since this scale transformation of profits does
not change any inherent property of instances, the performance of
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Table 2: ADisLRP vs. DisLRPU on Benchmark Instances

with all the profits multiplied by 1000 times

Instance Opt Protocol Round UB EstLB
c10200k −2806k ADisLRP 4962 −2804k −2924k
in gapc DisLRP1

U 10000 −200k −
DisLRP2

U 10000 −2000k −
DisLRP3

U 10000 −2650k −
c20200k −2391k ADisLRP 5698 −2391k −2497k
in gapc DisLRP1

U 10000 −100k −
DisLRP2

U 10000 −2000k −
DisLRP3

U 10000 −2355k −
c10200k −12432k∗ ADisLRP 5190 −12426k −12544k
in gapd DisLRP1

U 10000 −200k −
DisLRP2

U 10000 −1840k −
DisLRP3

U 10000 −3089k −
c20200k −12241k∗ ADisLRP 5259 −12230k −12589k
in gapd DisLRP1

U 10000 −100k −
DisLRP2

U 10000 −1746k −
DisLRP3

U 10000 −2735k −
c10200k −23307k∗ ADisLRP 4380 −23303k −23622k
in gape DisLRP1

U 10000 −200k −
DisLRP2

U 10000 −1963k −
DisLRP3

U 10000 −3767k −
c20200k −22379k∗ ADisLRP 5220 −22377k −28038k
in gape DisLRP1

U 10000 −100k −
DisLRP2

U 10000 −1956k −
DisLRP3

U 10000 −3696k −

protocols should ideally be invariant under that transformation. The
results are shown in Table 2. One can see that the performance of all
three versions of DisLRPU deteriorates under this transformation.
However, ADisLRP does not since it determines step length with
(10), whose scale is also transformed by exploiting the information
on the bounds. We may say that ADisLRP is robust since it is
effective for the larger range of problem instances.

5.2 Impact of Communication Delay
Since there is no global control in ADisLRP, no agent can be

aware of global information at the time it actually comes into be-
ing. In order to compute global information, the agents must spend
some additional rounds in diffusing their local information over a
spanning tree and, as described in Section 4.2, synchronizing their
actions. We will refer to these additional rounds as communica-
tion delay. During this delay period, the agents continue the usual
process of rounds, in which they repeat the knapsack problem solv-
ing and price updating with known (but actually out-of-date) global
information, until they are ready to use the latest global informa-
tion. Clearly, the larger the communication delay is, the longer the
rounds in which the agents use such obsolete global information
are. We should remark that the communication delay depends on
the topology of a spanning tree. For example, on the same com-
plete graph of five agents in Figure 2, we can see the communica-
tion delay to be 3 rounds for the breadth-first search tree (left) and
5 rounds for the depth-first search tree (right).

Our next experiments examine the impact of communication de-
lay on the performance of ADisLRP. In these experiments, we com-
pared ADisLRP with the breadth-first search tree (BFS) and ADis-
LRP with the depth-first search tree (DFS) on the benchmark prob-
lem instances. In addition, we will also report the results of the
ideal method (RT) for reference, in which any global information
can be computed in real-time (with no communication delay), and
the best-known lower bounds are given in advance. The results are
shown in Table 3. These results clearly indicate that there is virtu-
ally no impact of communication delay on the upper bound found

Agent1

Agent2 Agent5

Agent3 Agent4

Agent1

Agent2 Agent5

Agent3 Agent4

Figure 2: Breadth-first search tree (left) and Depth-first search

tree (right)

Table 3: Impact of the Communication Delay
Instance Opt STree Round UB EstLB
c10200 −2806 BFS 4542 −2804 −2939
in gapc DFS 4606 −2804 −2931

RT 3268 −2804 −2806
c20200 −2391 BFS 5327 −2391 −2503
in gapc DFS 4631 −2391 −2498

RT 5373 −2391 −2391
c10200 −12432∗ BFS 4405 −12426 −12559
in gapd DFS 3791 −12426 −12540

RT 3157 −12426 −12432
c20200 −12241∗ BFS 4422 −12230 −12595
in gapd DFS 4751 −12230 −12620

RT 4138 −12230 −12241
c10200 −23307∗ BFS 4400 −23303 −24487
in gape DFS 4532 −23303 −24450

RT 2768 −23303 −23307
c20200 −22379∗ BFS 4344 −22378 −28070
in gape DFS 3586 −22378 −27549

RT 3492 −22377 −22379

by ADisLRP.

6. CONCLUSIONS
We have presented a new distributed optimization protocol called

Adaptive DisLRP (ADisLRP) to solve GMAP, in which the agents
compute step length, the degree of price update, by exploiting global
information obtained during the search. Since we did not assume
any central control in this protocol, we have introduced three main
ideas to create this approach in a distributed environment.

First, in order to make each agent find global information such
as the upper bounds on the optimal value of GMAP, we have in-
corporated a distributed data collection algorithm over a spanning
tree, called the CollectTree protocol. This protocol was also used
in DisLRPU [10] for computing the upper bounds. But, in ADis-
LRP, it has been used to compute not only the upper bounds but
also other global information needed for computing step length.
Second, for agents to have a consistent view of the price of goods
throughout the execution of the protocol, we have incorporated a
synchronization protocol, by which the agents involved with the
same goods can simultaneously update their price using the same
step length. Third, in order to avoid the need to pre-compute a
lower bound on the optimal value of GMAP, we have incorporated
an on-line protocol that can efficiently estimate the lower bounds.

Our experimental results on the critically hard GAP benchmark
instances showed that ADisLRP had a clear advantage over the pre-
vious protocol DisLRPU , since it converged to the states provid-
ing tight upper bounds in the larger range of instances. On top of
that, they also showed that the communication delay in computing
global information had virtually no impact on the performance of
the protocol.

On the other hand, we may say that one drawback of ADisLRP
is privacy loss [9]. An agent in DisLRPU reveals the optimal value
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of its local problem at every round. However, in ADisLRP, an agent
must reveal, in addition to this optimal value, the GMAP profits of
selected goods to perform the on-line estimation of lower bounds.
Future work may include addressing this privacy issue on ADis-
LRP.

Although our primary goal in developing ADisLRP was to find
tighter upper bounds, one might want to obtain tighter lower bounds
(along with feasible solutions) as well. Currently, ADisLRP is cer-
tainly able to estimate a lower bound at every round, which is ex-
ploited in computing step length. As indicated in our experiments,
these estimated lower bounds worked quite well for the protocol to
find tight upper bounds. However, those estimated lower bounds
are generally not so tight, and furthermore, they do not necessar-
ily come with feasible solutions. Future work may also include
incorporating ADisLRP with some distributed Lagrangian heuris-
tics, which aims to transform an infeasible solution with a (tight)
upper bound into a feasible solution.
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